PITstop - Тюнинг Своими Руками

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » PITstop - Тюнинг Своими Руками » Чип тюнинг » Форсировка двигателя


Форсировка двигателя

Сообщений 11 страница 15 из 15

11

Размеры карбюраторов
Подбор карбюратора к двигателю очень важен для его работы и экономичности. Многие конструкторы двигателей часто поддаются ошибочному мнению и устанавливают на свои двигатели карбюраторы по принципу «чем больше, тем лучше».
Если на двигатель установлен слишком большой карбюратор, то он будет глохнуть и работать с перебоями на низких оборотах и не начинает хорошо работать, пока не разгонится до очень высоких оборотов. Естественно, что ухудшаются экономичность и состав выхлопных газов.
Двигатели с большим рабочим объемом и двигатели, работающие на высоких оборотах, нуждаются в карбюраторах большей емкости, чем двигатели небольшого объема, работающие на низких оборотах.
Многие карбюраторы комбинируются по их потенциальной емкости воздушного потока, измеряемой в м3/мин. Большинство производителей, но не все, проверяют свои карбюраторы при давлении 38 мм рт. ст. При сравнении карбюраторов различных моделей проверьте, проведены ли измерения одинаковым способом.
Наиболее важными факторами при подборе размеров карбюратора является рабочий объем двигателя, максимальные обороты двигателя и объемная эффективность.
Объемная эффективность является мерой способности двигателя к наполнению цилиндров полностью и указывается в процентах (%). К примеру, двигатель рабочим объемом 1639 см3, который получает 1311см3 топливовоздушной смеси в свою камеру сгорания при каждом такте впуска, имеет объемную эффективность в 80%.
Для простоты предполагается объемная эффективность, примерно 80%, которая является средним значением для форсированного двигателя. Для повседневного применения с 4-камерным карбюратором, вам нужно определить, в каком диапазоне оборотов двигатель будет работать чаще всего. Будьте реалистом — можно навредить себе при переоценке. Округлите результаты к ближайшему подходящему размеру карбюратора. Приведенная ниже таблица является руководством по определению емкости карбюратора по потоку.
Как правило, форсированные двигатели небольшого рабочего объема требуют установки карбюраторов с емкостью по потоку от 14,200 до 17,040 м3/мин в зависимости от действительного рабочего объема и уровня модификации. Форсированные двигатели большого рабочего объема хорошо работают с карбюраторами с емкостью по потоку от 18 до 23 м3/мин снова в зависимости от рабочего объема и уровня форсировки.

Емкость карбюратора по потоку м3/мин в зависимости от рабочего объема и оборотов двигателя
Рабочий объем двигателя, см3 Число оборотов двигателя, об/мин
4000 4500 5000 5500 6000 6500
4097 6,958 7,384 8,236 9,088 9,940 10,792
4506 7,242 8,236 9,088 9,940 10,792 11,928
4916 7,752 8,946 9,94 10,792 11,928 12,780
5325 8,520 9,656 10,792 11,786 12,780 13,916
5735 9,230 10,366 11,502 12,638 13,916 14,910
5145 9,940 11,076 12,354 13,632 14,768 16,046
6555 10,508 11,928 13,206 14,484 15,762 17,040
6965 11,360 12,780 14,2 15,620 17,040 18,460
7375 11,928 13,348 14,768 16,472 17,750 19,880
Замечание. Эта таблица предназначена для стандартных двигателей. Для форсированных двигателей емкость по потоку должна быть увеличена примерно на 10%.

Для большинства 4-камерных карбюраторов существуют специальные воздушные фильтры. Некоторые из них имеют небольшую высоту, чтобы иметь возможность без проблем установить такой фильтр под капотом.

Выбирайте карбюратор, который можно установить на впускной коллектор вашего двигателя, и к которому можно приспособить прежние тяги управления дроссельной заслонкой. Если карбюратор имеет вакуумный привод дроссельных заслонок вторичных камер, то не пытайтесь изменить его на механический. Также прежний воздушный фильтр (воздухоочиститель) можно не всегда установить на другие карбюраторы. Для установки на новый карбюратор приобретите высокопоточный воздушный фильтр.
Если ваш автомобиль оснащен системой контроля выхлопных газов, то после замены карбюратора и воздушного фильтра подсоедините все устройства этой системы. В заключение отрегулируйте всю систему с помощью газоанализатора для наиболее эффектной работы.
Большинство карбюраторных двигателей имеют механические топливные насосы. Если вы серьезно форсируете двигатель, то установите высокопроизводительный топливный насос, или установите высокопроизводительный механический насос, или установите электрический топливный насос рядом с бензиновым баком. Руководствуйтесь инструкциями, прилагаемыми к топливному насосу для безопасности установки и последующей работы насоса.

Как настраивать карбюраторы
Когда карбюратор работает нормально, то он позволяет требуемому количеству воздуха и точно дозированному топливу попадать в двигатель. Один известный физик сказал, что карбюратор является чудесно созданным устройством для создания неправильной топливовоздушной смеси на всех оборотах двигателя. Хотя это довольно пессимистическая точка зрения, но временами это не так уж далеко от истины. Правдой является и то, что карбюратор является чудесным и остроумным прибором, который легко создает смесь неправильного состава при всех оборотах двигателя до тех пор, пока он не будет правильно откалиброван и не будет правильно работать.

Пристрастие к главным топливным жиклерам
Типичным заблуждением и ошибкой среди конструкторов-энтузиастов является «перенастройка» главной дозирующей системы путем фанатичного изменения. Справедливо, что отверстия в главных топливных жиклерах определяют максимальный поток топлива через главную дозирующую систему. Однако топливо попадает в воздушный поток разными путями, к примеру, через систему холостого хода, переходную систему и через систему экономайзера. В большинстве карбюраторов имеется много дополнительных не съемных «жиклеров», которые управляют потоком топлива при разных положениях дроссельной заслонки и значениях вакуума. Некоторые карбюраторы, подобные карбюраторам CARTER и EDELBLOCK, в дополнение к использованию различных ограничений для отверстий фиксированного размера также используют ступенчатые дозирующие стержни внутри съемных жиклеров, чтобы изменять поток топлива через главную дозирующую систему. Настройка таких карбюраторов описана в специальной литературе. Главные топливные жиклеры карбюраторов HOLLEY довольно легко позволяют настроить соотношение воздух/топливо в смеси в режиме работы, близком к полному открыванию дроссельной заслонки. Главные топливные жиклеры оказывают малое влияние на соотношения воздух/топливо в режимах холостого хода и работы с частично открытой дроссельной заслонкой, а это и есть те соотношения, которые важны для двигателя при преобладающих режимах его работы, т. е. при использовании его для повседневного применения. Хотя и важно откалибровать все системы (включая главные топливные жиклеры) для получения правильного состава смеси при широко открытой дроссельной заслонке, так же важно реализовать это и для других режимов, не менее значительных для автомобиля, а настройка только главных топливных жиклеров не влияет на большинство систем управления топливом в карбюраторе.

Система холостого хода и переходная система
ЕСЛИ вы создаете форсированный двигатель для повседневной езды, то нужно уделить большое внимание системе холостого хода и переходной системе. Почему? Потому, что эти системы влияют на работу двигателя при нормальных скоростях движения по шоссе больше, чем любые другие каналы подачи топлива в карбюраторе. Система холостого хода подает топливо через маленькие каналы, обычно расположенные чуть ниже полностью закрытых дроссельных заслонок. Эти отверстия для выхода топлива подают все топливо для работы двигателя в режиме холостого хода. Когда дроссельная заслонка частично открывается, дополнительные каналы (часто это пазы) открываются, что подает больше топлива в увеличившийся воздушный поток, попадающий в двигатель.
Эти дополнительные каналы питания образуют переходную систему, а когда дроссельная заслонка открывается дольше, они продолжают подавать топливо в дополнение к потоку топлива из каналов холостого хода, а иногда и вместо него. Фактически переходная система действительно подает в двигатель большую часть топлива в условиях нормального движения. Главная дозирующая система только начинает подавать топливо, когда дроссельная заслонка открывается дольше. Но в некоторых случаях переходная система будет продолжать подавать топливо, даже когда дроссельные заслонки открываются полностью, хотя эта подача составляет незначительную часть всего топлива. Пока система холостого хода и переходная система не будут правильно откалиброваны, дроссельная заслонка может удерживаться открытой слишком широко в движении, чтобы поддерживать нужные обороты двигателя. Это неизбежно включает в работу главную дозирующую систему, которая будет подавать дополнительное топливо, это приводит к увеличенному расходу топлива и замедленной реакции на перемещение дроссельной заслонки.
Вообще говоря, оптимальная калибровка для системы холостого хода и переходной системы является такой, которая создает наивысший вакуум коллектора при фиксированных оборотах двигателя. Это не относится к двигателям, которые используют оборудование для сгорания обедненной смеси, или к карбюраторам, которые имеют большие регулируемые воздушные жиклеры. Другими словами, если вы способны получить стабильные обороты холостого хода при вакууме 430 мм рт. ст. вместо 380 мм рт. ст., то двигатель будет потреблять меньше топлива по двум причинам:
• в двигатель будет попадать меньше топливовоздушной смеси;
• двигатель, вероятно, будет сжигать смесь более эффективно.
Может быть так, что не очевидно, почему вакуум коллектора будет увеличиваться, когда увеличивается эффективность холостого хода. Это станет более ясным, если представить себе, что дроссельные заслонки закрыты больше (при этом ограничивается поток воздуха под атмосферным давлением во впускной коллектор, и увеличивается вакуум), когда требуется
меньше топливовоздушной смеси для поддержания стабильных оборотов холостого хода. Когда вакуум увеличивается при средних оборотах, двигатель будет потреблять меньше воздуха и, если соотношение воздух/топливо будет поддерживаться постоянным, то и меньше топлива.
Использование вакуумметра для оптимизации системы холостого хода и переходной системы на первый взгляд кажется простым. К сожалению, существует большая проблема: почти все4-камерные карбюраторы не имеют возможностей для изменения калибровки этих систем. Дозировка на холостом ходу и при переходе от холостого хода к нагрузкам определяется отверстиями фиксированных размеров для потока топлива и другим набором фиксированных отверстий (в воздушных жиклерах). Отверстия позволяют воздуху смешиваться с топливом для начала его распыления перед тем, как оно достигнет распылителя. Эти системы не предназначены для модификации, так как производители карбюраторов считают, что настройка этих систем очень сложна без опыта и специальных приспособлений.

Изменение дозировки топлива в переходной системе/системе холостого хода
В теории, изменение калибровки системы холостого хода и переходной системы довольно просто. На практике, однако, небольшие количества топлива, требуемые для этих систем, приводят к необходимости использования мелких отверстии и каналов. Модификация этих каналов малого диаметра является хитрым процессом, который требует терпения и внимания. Иногда изменения в сотые доли, миллиметра могут привести к реальной разнице. Поэтому не стоит сразу «нападать» на эти системы и рассчитывать на скорый успех.
Калибровка переходной системы включает изменение общего потока топлива (обеднение или обогащение смеси в рабочем объеме двигателя) или изменение формы кривой характеристики потока топлива (т. с. изменение соотношения воздух/топливо в части диапазона рабочей системы). Для изменения соотношения воздух/топливо переходной системы во всем рабочем диапазоне требуется модификация ка-налов-для топлива (жиклеров фикси-

Главные топливные жиклеры определяют максимальный поток топлива через главную дозирующую систему, но топливо поступает в воздушный поток разными другими путями, к примеру, через систему холостого хода, переходную систему и через систему экономайзера.
1 - воздушный жиклер высоких оборотов;
2 - канал для выхода топлива в дополнительном диффузоре;
3 - воздушный жиклер холостого хода;
4 - паз для выхода топлива в режиме холостого хода;
5 - канал для выхода топлива переходной системы;
6 - топливный колодец системы холостого хода;
7 - главный топливный колодец;
8 - главный топливный жиклер;
9 - канал клапана экономайзера;
10 - клапан экономайзера.

Изменение соотношения воздух/топливо во всем рабочем диапазоне требует модификации отверстий жиклеров, которые дозируют топливо. Если вы хотите только изменить состав смеси при высоких скоростях воздушного потока, то нужно модифицировать. Воздушные жиклеры переходной системы
1 - воздушный жиклер правильного размера;
2 - воздушный жиклер слишком мал;
3 - воздушный жиклер слишком велик;
4 - топливный жиклер правильного размера;
5 - топливный жиклер слишком мал;
6 - топливный .-жиклер слишком велик;
7 -размер топливного жиклера; S - размер воздушного жиклера.

рованного размера), которые дозируют топливо для указанных систем. Обычно, ограничения потоку топлива, проще называемые жиклерами холостого хода, влияют как на систему холостого хода, так и на переходную систему, но система холостого хода может быть независимо перекалибрована с помощью регулировки винтов качества смеси на холостом ходу. Если вы хотите изменить только форму топливной кривой (изменить состав смеси при низких при низких или высоких скоростях воздушного потока), то нужно изменить воздушные жиклеры переходной системы. Изменение воздушных жиклеров имеет малое влияние на поток топлива при низких скоростях воздушного потока, т. к. вакуум у жиклеров мал. Однако при высоких уровнях воздушного пока, когда большие количества топлива движутся через каналы, а вакуум намного сильнее, увеличенный объем воздуха, проходящий через жиклеры, будет иметь намного большее влияние на подачу топлива. К примеру, при высоких скоростях потока большие воздушные жиклеры будут пропускать некоторый дополнительный воздух для обеднения смеси в переходном режиме. Для того чтобы получить оптимальную кривую топливовоздушного потока, для некоторых комбинаций двигателя, коллектора и карбюратора, можно построить как воздушные, так и топливные жиклеры, часто используя метод «проб и ошибок» (руководствуясь соответствующими данными)

Модификации системы холостого хода/переходной системы
Соотношения воздух/топливо переходной системы иллюстрируется этими кривыми соотношений воздух/ топливо. Соотношение воздух/топливо (по вертикальной оси) изменяется практически по линейному закону, когда размер отверстий топливных жиклеров (по горизонтальной оси) увеличивается (кривая I). Если тс же самые отверстия топливных жиклеров увеличиваются, когда размеры воздушных жиклеров слишком малы или слишком велики, то соотношение воздух/топливо изменяется не по линейному закону (кривые 2 и 3). Когда топливный жиклер имеет правильный размер, а воздушный жиклер увеличивается, то соотношение воздух/топливо изменяется более или менее быстро, когда отверстия топливных жиклеров соответственно слишком большие или слишком маленькие (кривые 6 и 5).

Руководство по модификации потока
Жиклер/система Проблема Корректирующие меры
Холостой ход Слишком богатая/слишком бедная смесь Отрегулируйте винт числа оборотов холостого хода
От холостого к работе переходной системы Слишком богатая/слишком бедная смесь Для обеднения уменьшите размер жиклера холостого хода, для обогащения - увеличьте его
Окончание работы переходной системы Слишком бедная смесь Уменьшите размер воздушного жиклера
Окончание работы переходной системы Слишком богатая смесь Увеличьте размер воздушного жиклера
Начало работы главной дозирующей системы Провал при переходе от переходной системы к главной дозирующей системе На карбюраторах с заменяемыми диффузорами используйте диффузоры меньшего размера. На карбюраторах HOLLEY или подобных увеличьте длину паза переходной системы или просверлите маленькое отверстие в дроссельной заслонке, чтобы позволить немного приблизить положение холостого хода (заслонка закрыта) и эффективно увеличить длину паза
Начало работы главной дозирующей системы Слишком бедная/ слишком богатая смесь Уменьшите/увеличьте размер жиклера
Работа главной дозирующей системы Слишком бедная/ слишком богатая смесь Уменьшите/увеличьте размер жиклера
Средний и верхний режим работы главной дозирующей системы Слишком бедная смесь Уменьшите размер воздушного жиклера
Средний и верхний режим работы главной дозирующей системы Слишком богатая смесь Увеличьте размер воздушного жиклера
Смесь при движении с высокой скоростью или при полном открывании дроссельной заслонки Слишком бедная/ слишком богатая смесь Добавление отверстий в эмульсионных трубках обедняет смесь. Отверстия в верхней части эмульсионной трубки влияют на смесь в диапазоне высоких оборотов
Открывание дроссельной заслонки Слишком бедная/ слишком богатая смесь от ускорительного насоса Перебои при открывании дроссельной заслонки: увеличьте подачу топлива путем увеличения размера жиклера ускорительного насоса. Черный дым и/или обогащение при открывании дроссельной заслонки: уменьшите подачу топлива путем уменьшения размера жиклера ускорительного насоса или уменьшите действие кулачка насоса

Оптимизация главной дозирующей системы
Оптимизация калибровки системы холостого хода и переходной системы может обеспечить больше преимуществ при использовании автомобиля для повседневной езды. Это справедливо для большинства уровней мощности обычного двигателя, которые он должен выдавать. Однако когда вы нажимаете педаль «газа» почти до пола, и обороты двигателя увеличиваются, система холостого хода и переходная система будут поставлять очень мало топлива в воздушный поток или вообще не будут поставлять его. В этих условиях управляет главная дозирующая система.
Вакуумметр, подсоединенный для измерения давления во впускном коллекторе и установленный в кабине там, где водитель может легко наблюдать за его показаниями, обеспечит визуальный метод контроля изменений при переходе от работы переходной системы до работы главной дозирующей системы. Для большинства карбюраторов главная дозирующая система начинает подавать топливо при уровне вакуума примерно 250 мм рт. ст. или меньше. При широко открытой дроссельной заслонке и высоких оборотах двигателя вакуум коллектора упадет практически до нуля, и главная дозирующая система будет подавать максимальное количество топлива. Подача регулируется главными топливными жиклерами и, на большинстве 4-камерных карбюраторов еще и системой экономайзера.
Многие карбюраторы, в частности HOLLEY, приближаются к идеальной калибровке главной дозирующей системы/системы экономайзера, когда поток топлива только через главные топливные жиклеры обеспечивает слегка обедненную смесь для двигателя, идеальную для движения автомобиля с высокой скоростью, когда вакуум коллектора составляет от 300 до 125 мм рт. ст. Если вакуум снижается менее 125 мм рт. ст., то открывается клапан экономайзера и подается дополнительное топливо для обогащения смеси и достижения максимальной мощности. К сожалению, большинство настройщиков карбюраторов калибруют главные топливные жиклеры только для оптимального соотношения воздух/топливо при широко открытой дроссельной заслонке. Это часто приводит к сильно обогащенной смеси в режиме обычного движения, к повышенному расходу топ-

Модификация каналов системы экономайзера (РVR) более сложна, чем вкручивание новых главных топливных жиклеров. Увеличение диаметров каналов довольно легко делается с помощью рассверливания, однако уменьшить их намного сложнее. Это часто требует установки в каналы проволочек малого диаметра для уменьшения потока.

Поиск правильной комбинации потока между главной дозирующей системой и экономайзером можно упростить, если поток топлива у главного топливного жиклера изолировать от каналов экономайзера путем предотвращения работы клапана экономайзера. Этого можно добиваться установкой заглушки клапана экономайзера от фирмы HOLLEY — это предотвратит попадание топлива в PVR (каналы).

лива и иногда к «заливанию» свечей зажигания. Намного лучшим подходом является настройка главных топливных жиклеров на слегка обедненную смесь при движении с высокими оборотами, измеряемыми перед тем, как открывается клапан экономайзера, а затем изменение каналов системы экономайзера, чтобы обеспечить подачу дополнительного топлива для оптимальной работы при полном открывании дроссельной заслонки. Однако, модификация каналов экономайзера (они обозначаются как PVR) более сложна, чем выкручивание главных топливных жиклеров, и это является основной причиной того, что большинство настройщиков карбюраторов не производят модификаций PVR. Проблема здесь заключается в том, что сделать каналы больше довольно легко (рассверлив их), но сделать их уже намного сложнее и это часто требует установки проволочек малого диаметра в отверстия каналов, чтобы уменьшить поток топлива.

Когда поток в каналах экономайзера уменьшен, вы можете устанавливать все меньшие и меньшие главные топливные жиклеры, пока двигатель не начнет работать с перебоями. Увеличение размера главных топливных жиклеров на 1-2 номера по сравнению с прежней установкой обычно обеспечивает удовлетворительное соотношение воздух/топливо в главной дозирующей системе для движения с высокими скоростями.

Поиск правильной комбинации потока между главной дозирующей системой и экономайзером нелегкая задача, особенно если нет опыта таких экспериментов. Однако работу можно облегчить, если поток топлива из главного топливного жиклера изолируется от канала экономайзера путем предотвращения открывания клапана экономайзера или путем установки модифицированного клапана экономайзера, чтобы он не открывался. Можно использовать заглушку клапана экономайзера.
Когда поток топлива через каналы экономайзера уменьшен или вообще устранен, а автомобиль установлен на измерительный стенд и вакуум во впускном коллекторе меньше 250 мм рт. ст., устанавливайте все меньшие и меньшие главные топливные жиклеры, пока двигатель не начнет работать с перебоями, и появятся пропуски зажигания. Такое состояние можно определить с помощью газоанализатора с возможностью определения концентрации углеводородов (СН) по резкому увеличению выбросов СН в выхлопных газах, т. к. смесь теперь будет переобедненной для эффективного воспламенения и сгорания. Наибольшее увеличение диаметров главных топливных жиклеров (на I -2 номера) по сравнению с указанными условиями обычно обеспечивает удовлетворительное соотношение воздух/топливо для режима движения с высокой скоростью. Когда это условие достигнуто, устанавливается прежний стандартный клапан экономайзера и каналы экономайзера увеличиваются (обычно) для обеспечения богатой смеси, пока не будет достигнута максимальная мощность при полностью открытой дроссельной заслонке.
Если у вас нет газоанализатора для измерения СН, испытательного стенда или другого специализированного измерительного оборудования, вы, тем не менее, можете очень близко подойти к оптимальному потоку топлива через главные топливные жиклеры, пользуясь методом «проб и ошибок» и, осматривая свечи зажигания, хотя это и требует больших затрат времени. Во-первых, установите новые свечи зажигания, которые близки по калильному числу к свечам, рекомендованным фирмой-производителем для этого двигателя. Далее, установите заблокированный клапан экономайзера или заглушку клапана и проедьте на автомобиле, пытаясь поддерживать указанный уровень вакуума, который поддерживает поток топлива через главную дозирующую систему, что обычно составляет менее 250 мм рт. ст. В некоторых случаях вы можете отыскать длинный подъем, чтобы дать двигателю нагрузку. Более высокое значение вакуума может позволить топливу вытекать из отверстий переходной системы, результатом этого будет сомнительное состояние свечей зажигания. В крайнем случае, вы можете слегка нажать на тормоза (не перегревая тормозные колодки), чтобы создать нагрузку на автомобиль и уменьшить вакуум. После работы двигателя с такой нагрузкой заглушите двигатель и снимите несколько свечей зажигания (не менее двух из разных плоскостей впускного коллектора). Тщательная проверка фарфорового изолятора чуть ниже зазора между электродами должна подтвердить, что он должен иметь цвет от светло-коричневого до серовато-белого, указывающего на обедненную гопливовоздушную смесь. Если вы установили главные топливные жиклеры, дающие переобедненную смесь, то цвет изолятора будет почти белым, и вы почувствуете, что двигатель будет работать с перебоями. В идеальном случае попробуйте откалибровать карбюратор так, чтобы главные топливные жиклеры были на 1-2 номера «богаче», чем те, которые приводят к пропускам зажигания из-за переобеднения смеси. Когда вы добились этого, установите стандартный клапан экономайзера, чтобы начать калибровку его каналов для получения максимальной мощности. Это обычно потребует нескольких поездок на одинаковое расстояние, с каждым заездом увеличивая диаметр каналов экономайзера. Если вы делаете эти модификации тщательно, то можете избежать слишком большого увеличения каналов, т. к. мощность двигателя будет увеличиваться постепенно, пока не будет достигнуто максимальное значение мощности. Для такой настройки лучше всего пользоваться электронными приборами, устанавливаемыми на передней панели, которые точно измеряют разные параметры.

Настройка ускорительного насоса
Когда система холостого хода, переходная система и главная дозирующая система правильно настроена, нужно уделить внимание системе ускорительного насоса. В прошлом было популярной практикой регулировать ускорительный насос так, чтобы он обеспечивал как можно более сильное впрыскивание топлива. При этом могут быть повреждены поршневые кольца из-за наличия бензина в цилиндрах. Даже если вы стремитесь к максимальной мощности, то слишком «сильный» ускорительный насос не нужен. Если вы хотите иметь чистый и чувствительный двигатель, ускорительный насос должен впрыскивать достаточное количество топлива, чтобы обеспечивать провалы в работе двигателя при разгоне с низких оборотов, калибровка ускорительного насоса может быть сделана только при дорожных испытаниях. Во-первых, уменьшите объем топлива, подаваемого при каждом ходе насоса, постепенным образом (руководствуясь инструкцией к карбюратору) и после каждого такого изменения проверьте разгон автомобиля при полном открывании дроссельной заслонки. Если после нескольких уменьшений вы почувствуете перебои в работе двигателя при резком открывании дроссельной заслонки, то увеличьте объем впрыскиваемого топлива на один шаг.

Установка состава (качества) смеси в режиме холостого хода
После того, как вы оптимизировали соотношения воздух/топливо в переходной и главной дозирующей системах, заключительным этапом в форсировке карбюратора является регулировка состава смеси на холостом ходу и оборотов холостого хода. Для карбюраторов, которые не имеют пломб и ограничителей на винтах качества смеси (многие карбюраторы имеют на этих винтах пластиковые головки, которые ограничивают возможность регулировки всего одним оборотом), соотношение воздух/топливо на холостом ходу может быть установлено с помощью чувствительного вакуумметра для настройки. Подсоедините вакуумметр к источнику вакуума, а не к вакуумному каналу. Почти безошибочной проверкой для определения места подсоединения вакуумметра является следующая. Измерьте вакуум на холостом ходу. Если прибор показывает значение, превышающее 125 мм рт. ст., то вы можете быть уверены, подсоединились непосредственно к вакууму коллектора, а не к другому источнику. Затем установите винт регулировки числа оборотов холостого хода двигателя, чтобы получить требуемое число оборотов, а затем попеременно регулируйте каждый из винтов качества (состава) смеси, вкручивая и выкручивая его, пока не будет достигнуто максимальное значение вакуума.

Фирма HOLLEY предлагает различные кулачки для насосов, распылители и корпуса, не говоря уже о различных регулировках тяг привода карбюратора.

При этом обороты холостого хода могут увеличиться. Если это произошло, то уменьшите обороты с помощью винта регулировки числа оборотов холостого хода и продолжайте поворачивать винты качества смеси, пока для требуемого числа оборотов не будет получено наивысшее стабильное значение вакуума коллектора. Не позволяйте оборотам холостого хода увеличиваться выше, чем на 100-150 об/ мин по сравнению с нужными оборотами, т. к. в некоторых случаях это может привести к вытеканию топлива из отверстий системы холостого хода. Это затруднит точную регулировку качества смеси на холостом ходу.

Калибровка каналов экономайзера (PVR) может иногда быть сделана с помощью электронных-приборов, устанавливаемых на передней панели в кабине автомобиля и способных к измерению потока топлива и/или мощности двигателя. Оригинальные компьютерные системы фирмы GALE BANKS ENGINEERING (в низу) отображает текущую мощность двигателя в движении. Система VERICOM УС-200 (в верху) является специальным анализатором, который обеспечивает общую оценку работы двигателя. Прибор HOLLEY MPG и дистанционный измеритель (в центре) обеспечивает точную настройку и ими легко пользоваться. Они определяют поток топлива, расход топлива, обороты двигателя, пройденное расстояние и расстояние, которое автомобиль может пройти на остатке топлива в баке.

Индикатор бедной/богатой смеси упрощает настройку главных топливных жиклеров холостого хода. Такие приборы используют датчик кислорода и индикатора передней панели. Оба этих прибора используют быстро реагирующий датчик кислорода, подобный датчикам, используемым в профессиональных системах анализа выхлопных газов. Индикаторы откликаются на изменение состава топливовоздушной смеси так быстро, что их можно использовать для настройки ускорительных насосов

Если вы пользуетесь карбюратором с ограничителями на винтах качества смеси, может быть так, что вы не сможете добиться желаемого соотношения воздух/топливо в пределах диапазона регулировок. Это может быть из-за того, что вы сделали другие изменения на двигателе, но каковы бы ни были причины, вы можете снять ограничители регулировок, чтобы можно было правильно отрегулировать состав смеси для лучшей работы в режиме холостого хода и/или минимальной концентрации токсичных веществ в выхлопных газах. Для аккуратной регулировки этих карбюраторов, особенно, если вы хотите добиться концентрации токсичных веществ, допускаемой требованиями по охране окружающей среды, вам понадобиться анализатор. Без него вы ничего не сделаете и будете только теряться в догадках. Пропуски зажигания на высоких оборотах, провалы в работе на низких оборотах или другие недостатки могут бытъ быстро диагностированы с помощью этого прибора, установленного на передней панели автомобиля.
Процедура регулировки качества смеси па холостом ходу с использованием газоанализатора довольно проста, но кропотлива. Вам нужно добиться наиболее обедненной смеси, чтобы начали появляться перебои в работе из-за переобедненпя. Хотя эти регулировки очень тонкие, но на практике газоанализатор точно показывает, как карбюратор и двигатель реагируют на малейшее перемещение винта качества смеси. Дополнительные указания можно найти в руководстве по эксплуатации, прилагаемом к любому газоанализатору.

Легкий выход из положения

Для многих применений основной целью является максимальный воздушный поток. Этот вал дроссельных заслонок от фирмы BRFSWELL имеет суженные верхнюю и нижнюю поверхности, чтобы уменьшить сопротивление потоку. Модификация включает в себя обработку поверхности и установку других втулок.

Если вы чувствуете сомнение в своих силах, то есть довольно простой выход из данной ситуации. Вместо модификации систем карбюратора вы можете купить уже модифицированный карбюратор, откалиброванный производителем или в специализированной фирме для конкретных применений. Практически все фирмы-производители карбюраторов и многие конструкторы-форсовщики располагают достаточными навыками и знаниями в области требований к калибровке для очень многих областей применения и имеют возможность подготовить карбюратор, настроенный почти идеалыю для вашего двигателя.

Фирма BRFSWELL CARBURAT1ON выпускает одни из лучших карбюраторов « мире для гоночных двигателей, к построении которых они достигла больших успехов. В зависимости от особенностей использования модификация  может включать в себя сотни изменений и улучшений.

Модификация карбюраторов для форсированных двигателей
• Первым шагом является разборка, проверка и очистка отдельных деталей. Основной корпус карбюратора и некоторые детали нужно обрабатывать специальным составом COLOR RESTOR, что улучшит внешний вид карбюратора.

• Снимите верхнюю заглушку для регулировки состава при частично открытой дроссельной заслонке и установите съемную заглушку, которая обеспечивает удобный доступ для этой регулировки. Для модификации карбюратора поставляется регулировочное приспособление для состава смеси при частично открытой дроссельной заслонке.
• Обработайте пластины дроссельных заслонок и установите втулки OIL-LIFE для вала дроссельных заслонок, чтобы уменьшить утечки вакуума и улучшить характеристики карбюратора при работе на холостом ходу.

• Установите специальные трубки для холостого хода, топливные жиклеры холостого хода и дозируюшие стержни. Эти и другие детали поставляются в форме набора для модификации карбюраторов.

• Просверлите и нарежьте резьбу в отверстиях для главных топливных жиклеров вторичных камер, чтобы можно было вкручиать жиклеры

• После того, как установлены жиклеры ускорительного насоса, латунные поплавки и новое устройство открывания воздушной заслонки, карбюратор собирается, калибруется и испытывается на двигателе. Отрегулируйте качество смеси на холостом ходу и в движении, тяги привода дроссельной заслонки п проверьте, нет ли утечек топлива.

Стандартные и специальные воздушные фильтры
Высокофорсированный двигатель имеет высокую потребность в воздухе. Тысячи литров воздуха смешиваются с топливом в пропорции примерно 7000:1. Другими словами, при сгорании 15л. бензина двигатель потребляет более 100 000 л. воздуха. Этот значительный объем должен быть тщательно очищен и подан к карбюратору без заметного сопротивления воздушному потоку, особенно при высоких оборотах двигателя. Стандартные и специальные узлы воздушных фильтров удовлетворяют этому требованию с переменным успехом, однако, стандартные воздушные фильтры выполняют некоторые дополнительные функции, которые не выполняют большинство специальных воздушных фильтров. Так как главной заботой производителей автомобилей является снижение выбросов топлива и токсичных веществ, промышленные воздушные фильтры должны отвечать этим задачам. Но даже исключая эти различия, стандартные воздушные фильтры сконструированы для предотвращения повреждения фильтрующего элемента от обратных вспышек, для быстрого прогрева двигателя, улучшения приемистости, уменьшения шума и предотвращения обледенения вала дроссельных заслонок в холодную погоду. Если вы делаете автомобиль специального назначения или другой автомобиль, когда внешние данные и характеристики перевешивают другие требования, некоторые или даже все дополнительные функции могут быть не очень важными. С другой стороны, если вы собираете автомобиль для повседневного использования, то внимательно подумайте перед переделкой стандартного фильтра: обеспечит ли новый узел улучшение уже существующего потока, и легко ли будет произвести модификацию.

Улучшение стандартной системы
Карбюраторы обеспечивают правильный состав топливовоздушной смеси, когда воздух средней плотности движется через диффузоры. Однако, когда изменяется температура воздуха, плотность его тоже изменяется. Когда воздух нагревается, он становится менее плотным, а когда он охлаждается, плотность его увеличивается. Это означает, что тот же самый объем воздуха под атмосферным давлением может весить меньше, когда он нагревается и больше, когда охлаждается. Разница в весе обязана количеству молекул кислорода в том же объеме. К сожалению, карбюратор не может чувствовать изменение плотности воздуха.

Стандартные фильтры предназначены не только для уменьшения токсичных выбросов, но они также должны предотвращать повреждения фильтрующего элемента от обратных вспышек, ускорять прогрев двигателя, улучшать приемистость, уменьшать шумы двигателя, сокращать обледенение вала дроссельной заслонки в холодную погоду и т. д.

Количество топлива, поступающего в воздушный поток, может оставаться практически постоянным, лаже когда количество молекул кислорода, участвующих в процессе сгорания, изменяется Следовательно, пока карбюратор не будет модифицирован, чтобы он «чувствовал» изменения плотности (некоторые карбюраторы делают «попытки» для этого), соотношение воздух/топливо в смеси будет изменяться при изменении температуры воздуха.
Хотя охлаждение всего поступающего воздуха до стабильной низкой температуры было бы очень хорошим для увеличения мощности, это очень трудно осуществить, так как количество воздуха, требуемого для непрерывной работы высокооборотистого двигателя, очень велико. Впрыск окиси азота, однако, является эффективным путем для уменьшения температуры воздуха. Автомобильные инженеры предлагают более практичный подход для стабилизации плотности воздуха: они нагревают весь поступающий воздух до равномерной температуры и калибруют карбюратор так, чтобы он соответствовал потоку этого нагретого, но менее плотного воздуха. Во многих с случаях корпус воздушною фильтра имеет датчик температуры для регулировки смешивания горячего воздуха, втягиваемого от внешнего источника с поступающим воздухом так, чтобы карбюратор получал воздух при относительно постоянной температуре, которая составляет примерно 50-60° С. Такая система поддерживает более точное cooтношение воздух/топливо при нормальных рабочих условиях, улучшает испарение топлива, экономию топлива и помогает поддерживать токсичность выхлопных газов в нужных пределах.

Нет необходимости компромиссов
Повышение температуры поступающей топливовоздушной смеси имеет как преимущества, так и недостатки. Более теплый воздух может повысить эффективность сгорания путем улучшения испарения топлива, но это также уменьшает концентрацию кислорода и снижает мощность. К счастью, есть путь добиться улучшения в обеих областях. Некоторые воздушные фильтры имеют байпасный (перепускной) клапан холодного воздуха. При нормальном движении заслонка в воздушном фильтре направляет горячий воздух, поступающий из области, близкой к выпускному коллектору, в двигатель. Но при быстром разгоне; когда вакуум коллектора падает практически до нуля, клапан заслонки закрывается, и только холодный воздух, забираемый за пределами моторного отсека, поступает в воздушный фильтр. Если корпус вашего фильтра не имеет такого устройства, то вы можете модифицировать фильтр так, чтобы он работал описанным выше образом. Некоторые конструкторы-энтузиасты сваривают вместе детали от нескольких воздушных фильтров, чтобы получить модифицированный узел. Другие конструкторы использовали механический тросовый привод с ручкой на передней панели для открывания забора воздуха снаружи. Вне зависимости от того, какой метод вы выберете, использование горячего и холодного воздуха в нужное время может улучшить приемистость и работу форсированных двигателей для повседневного использования.
Некоторые из лучших устройств для впуска холодного воздуха являются довольно сложными системами. Хорошим примером этого может служить карбюратор Z-28s выпуска 1983-1985 г.г. Корпус фильтра имеет два относительно свободных канала, подающих холодный воздух из передней части автомобиля. Испытания в движении показали, что автомобили оборудованные этим устройством, при заездах на четверть мили проходили дистанцию быстрее на 0,2 сек, чем те же самые автомобили с корпусом фильтра с 360-градусной (круглой) полностью открытой конструкцией. Контрольные проверки производились с карбюратором, при необходимости перекалиброванным и с высокопоточными фильтрующими элементами, которые были установлены при всех заездах. Как сравнить систему вашего воздушного фильтра с этой конструкцией? Пока она специально не сконструирована для форсированного двигателя, шансы лучше тогда, когда сделано улучшение. Однако, если система способна к забору холодного воздуха снаружи моторного отсека, то это, вероятно, будет хорошей точкой для старта.
Даже если вы имеете возможность использовать холодный наружный воздух при широко открытой дроссельной заслонке и теплый воздух при частично открытой дроссельной заслонке, то имеется другой серьезный недостаток и у стандартных и у специальных воздушных фильтров: они создают слишком большое сопротивление при использовании в форсированных двигателях. Фактически, многие «форсированные» воздушные фильтры, предлагаемые различными компаниями, сконструированы в основном для того, чтобы украсить моторный отсек, и ничего не делают для увеличения мощности, кроме того, что забор воздуха через них идет по всей 360-градусной окружности, поскольку они больше по размеру. Некоторые узлы меньшего размера даже не равны стандартным узлам по скорости воздушного потока! Однако, к счастью, существует легкий путь для улучшения емкости потока практически любого воздушного фильтра: установка фильтрующего элемента, обеспечивающего высокий объем потока и inn-кое сопротивление потоку.

Выбор фильтрующего элемента воздушного фильтра
Некоторые фильтрующие элементы имеют очень низкое сопротивление воздушному потоку, а другие, с большим сопротивлением, могут существенно уменьшить потенциал мощности и привести к неточной дозировке топлива. Из трех типов имеющихся фильтрующих элементов наиболее популярным является обычный бумажный элемент. Другим известным типом (хотя его используют все меньше и меньше) является пенистый элемент, применяемый в воздушных фильтрах автомобилей типа «хот-род». Наиболее редким типом является элемент из хлопковых волокон.
Помните, что каждый фильтрующий элемент имеет два главных критерия конструкции:
• очистка воздуха, поступающего в двигатель;
• минимальное сопротивление воздушному потоку.
В пыльном сухом климате неэффективный фильтрующий элемент может сильно сократить срок службы двигателя, и будет ускорен износ деталей примерно в 4-6 раз. Одним из худших элементов является открытый сетчатый фильтр. Эти конструкции не имеют сменного элемента вообще, а вместо этого они используют сетку из проволоки. Они малоэффективны, но могут показаться «хитрым» выходом из положения и хуже всего то, что фильтры с проволочной сеткой имеют большое сопротивление и серьезно снижают мощность двигателя. Отсюда следует простой вывод: нужно использовать как можно лучший фильтр.
Очень важно понимать, что бумажные фильтры хорошо пропускают поток, когда они новые, однако поток быстро уменьшается, когда мелкие частички пыли и грязи забивают поры фильтра. Фильтры из пены не забиваются так быстро, но они имеют обычно большее сопротивление потоку. Однако фильтр из хлопка с нитями или проволокой имеет меньшее сопротивление и может иногда эффективно использоваться (без очистки элемента) на продолжении 80 000 км пробега без создания заметного сопротивления потоку.
Для работы в холодную погоду или, когда в ваш воздушный фильтр попадает холодный воздух, используйте специальный элемент такого же размера, как и стандартный, чтобы крышка воздушного фильтра плотно сидела на корпусе. Если корпус воздушного фильтра не создает большого сопротивления потоку, то уже это улучшит мощность двигателя. Если в воздушный фильтр не поступает холодный воздух, и вы ездите в основном в теплом климате, то установите элемент, который выше примерно на 12,5-19 мм (какой можно установить под капот). Более высокий фильтр будет пропускать больше воздуха, а кольцевая щель, образованная между корпусом и крышкой, уменьшит сопротивление потоку.
Избегайте старого трюка изготовителей автомобилей «хот-род», устанавливающих крышку воздушного фильтра «вверх ногами». Хотя кольцевой зазор может уменьшить сопротивление элемента, вогнутая форма многих крышек воздушного фильтра может уменьшить воздушный поток над карбюратором, что неизбежно приведет к изменениям соотношения воздух/топливо.
Фактически, если ничего не изменять, а установить элементе меньшим сопротивлением на некоторые двигатели, то это может привести к пропускам зажигания из-за переобеднения смеси. В этих случаях нужно изменить дозировку в системе холостого хода и в переходной системе в сторону обогащения смеси, для восстановления ровной работы двигателя.

Существуют два типа воздушных фильтров, которые следует избегать. Проволочный сетчатый фильтр (внизу) практически вообще не очищает  воздух. Пенные элементы (вверху) создают высокое сопротивление воздуху на высоких оборотах и некоторые из них могут даже расплавиться, если в карбюраторе происходит обратная вспышка.

Если вы используете воздушный фильтр специальной конструкции, то убедитесь, что выбрали фильтр с 360-градусным забором воздуха (или, что далее лучше, с забором холодного воздуха, как показано здесь).

12

Впускные коллекторы
Общая информация
Новый впускной коллектор может высвободить заметную мощность и одновременно улучшить топливную экономичность, если он правильно подобран. Другим преимуществом улучшенного впускного коллектора является уменьшение веса благодаря использованию алюминия по сравнению с прежним чугунным узлом.
Хотя экзотические впускные коллекторы для нескольких карбюраторов, с большой высотой и перекрещивающимися каналами выглядят внушительно, для повседневного использования лучше простой коллектор. Почти все впускные коллекторы для форсированных двигателей повседневного применения используются совместно с одним четырехкамерным карбюратором. Это обеспечивает мощность в сочетании с экономичностью и надежностью при относительно низкой стоимости. Многокарбюраторные агрегаты довольно дороги, их трудно настраивать и обслуживать. Единственный правильно подобранный карбюратор обеспечит поток топливовоздушной смеси, необходимый для двигателя.
Впускные коллекторы, подобно многим другим деталям двигателя, тоже "настраиваются" для лучшей работы в определенной области оборотов. Вообще говоря, коллекторы с длинными каналами обеспечивают лучший крутящий момент на низких оборотах, а коллекторы с относительно короткими каналами увеличивают мощность на высоких оборотах.

Система впуска
Как вы могли видеть из предыдущих глав этой книги, даже небольшие детали механической конструкции влияют на мощность автомобиля. Небольшие изменения формы головок поршней, затруднения в распространении пламени и динамика потока, определяемая формой кулачков распределительного вала, являются лишь некоторыми из многих факторов, которые могут, как увеличивать, так и уменьшать мощность. Так как наше рассмотрение идет от головки блока цилиндров к карбюратору, мы хотели бы добавить систему впуска к нашему пониманию того, как увеличить мощность двигателя. Однако, мы также заметно увеличиваем сложность потенциальных конструкций, и эти усложнения могут представлять серьезные трудности для неопытного конструктора. Трудности могут быть и случайными (в форме мощности) даже для осведомленного механика.
Система впуска включает в себя все, что подает топливовоздушную смесь правильного состава в камеры сгорания. В данном случае система впуска определяется как впускной коллектор, карбюратор (электронные системы впрыска в этой книге не обсуждаются) и воздухоочиститель (воздушный фильтр). Эти детали являются основными поставщиками воздуха и распыленного топлива, и они имеют в большой степени предсказуемое влияние на мощность. Из-за этого практично обсуждать каждую деталь отдельно; чтобы понять и оптимизировать его функции. Однако ваши поиски мощности будут успешными только в том случае, когда вы узнаете, на что влияет система впуска и что влияет на нее.
На работу впускного коллектора, особенно для двигателей типа V8, очень сильно влияют другие детали. К примеру, определенный карбюратор, распредвал и, в меньшей степени, головка блока цилиндров могут довольно хорошо работать с конкретным коллектором, иногда обеспечивая большую мощность по сравнению со стандартным двигателем. Однако, та же самая комбинация с другим впускным коллектором "хитрой" конструкции может выдавать меньшую мощность, чем со стандартным коллектором. И в сложных случаях ' изменение карбюратора или распредвала может изменить результат, испытания на стенде могут показать, что испытуемый двигатель из прошлых проверок теперь будет наилучшим выбором. Это, несомненно, делает выбор впускного коллектора очень сложной работой для конструктора, не имеющего испытательного стенда (не говоря уже о затратах времени и денег). Но не отчаивайтесь -имеется несколько испытанных комбинаций, которые хорошо работают на большинстве двигателей. По мере прочтения этой главы вы лучше познакомитесь с этими беспроигрышными вариантами.

Впускной коллектор, возможно, является деталью существенно способствующей мощности. Часто коллектор недостаточно доводится и редко оптимизируется на форсированных двигателях.
I - верхняя плоскость; 2 - нижняя плоскость; 3 - фланец корпуса термостата; 4 - расширенное отверстие фланца карбюратора; 5 - вакуумные каналы; 6 - камера; 7 - теплообменник; 8 - фланец впускного коллектора; 9 - труба; 10-канал (магистраль), 11 – канал для охлаждающей жидкости.

Типичный впускной коллектор с двухплоскостной конструкцией.

Типичный одноплоскостной впускной коллектор.

Одноплоскостной впускной коллектор (вверху) позволяет одному карбюратору подавать рабочую смесь во все цилиндры из большой общей камеры. Двухплоскостной (двухуровневый) коллектор направляет впускные потоки смеси по двум каналам так, что каждая половина карбюратора независимо подает смесь (разделение 180°). На практике, меньший объем и карбюратор на одной стороне в конструкции с двумя плоскостями обычно выдают больший крутящий момент на низких оборотах. "Чистый" поток смеси всех камер карбюратора в коллекторе с открытой камерой будет увеличивать мощность на высоких оборотах.

На 360-градусных конструкциях (слева) все каналы питаются от одной камеры, а на 180-градусных (справа) конструкциях одна половина каналов соединена с одной камерой, а другие каналы — с другой камерой.

Хотя это и необычно, 360-градусный коллектор включает в себя не только основную конструкцию одноплоскостного коллектора, но и использует разделенную камеру.

На одноплоскостных (360 - градусных) впускных коллекторах все впускные каналы находятся на одном уровне и имеют приблизительно одинаковую длину. Это помогает улучшить распределение топливовоздушной смеси, что является проблемой у некоторых двухплоскостных коллекторов. Не так давно были разработаны одноплоскостные коллекторы с лучшими характеристиками в области низких и средних оборотов. Если вы хотите увеличить мощность в области средних и высоких оборотов вместо крутящего момента на низких и средних оборотах, то можно выбрать одноплоскостной коллектор. Имейте в виду, что наиболее используемая мощность, выдаваемая двигателем, как раз находится в области низких и средних оборотов.
На карбюраторных моделях и моделях с впрыском топлива с корпусом дроссельной заслонки впускной коллектор распределяет топливовоздушную смесь по впускным каналам головок блока цилиндров. Впускные коллекторы на моделях с многоточечным впрыском топлива подают только воздух; топливо подастся в отверстия (каналы головок блока цилиндров).
Имеются две основные конструкции впускных коллекторов для двигателей повседневного применения — одноплоскостные и двухплоскостные (называемые также З60-градусными и 180-градусными).
Практически все стандартные впускные коллекторы для двигателей V8 используют двухплоскостную конструкцию, так, как она улучшает мощность на низких и средних оборотах, экономичность, приемистость и низкую токсичность выхлопных газов. Двухплоскостные коллекторы разделяются так, что каждый второй цилиндр по порядку зажигания питается смесью от одной стороны карбюратора, а остальные цилиндры — от другой стороны. Это эффективно улучшает скорость поступающего потока и реакцию на перемещение дроссельной заслонки в области низких и средних оборотов, но мощность при высоких оборотах снижается.
Впускные коллекторы имеются в версиях с низким, средним и высоким подъемом. Тип с низким подъемом предназначается для установки в автомобили с низкой линией капота и обычно теряет некоторую мощность по сравнению с типом с высоким подъемом. Для большинства применений, если имеется достаточное пространство под капотом, лучше пользоваться типом с высоким подъемом.
Существуют две другие распространенные конструкции, о которых нужно знать и которые используются в основном для гоночных двигателей. К сожалению, эти коллекторы уменьшают мощность на низких оборотах, приемистость и экономичность, а также увеличивают концентрацию токсичных веществ в выхлопных газах.
На коллекторе с пересекающимися каналами установлены два 4-камер-ных карбюратора, но они установлены последовательно вместо установки по разные стороны. Это используется на спортивных автомобилях, где карбюраторы выступают из-под капота автомобиля.

Типичный впускной коллектор с туннельными каналами.

Существующие типы
Имеется значительное число стандартных и специальных впускных коллекторов для карбюраторных двигателей. Существуют специальные каталоги, которые помогают подобрать подходящий коллектор. Однако двигатели должны быть аналогичны двигателям, указанным в этих каталогах, чтобы получить заявленную мощность. Для наилучших результатов все детали должны работать совместно.
Когда вы определите основной тип коллектора (одноплоскостной или двухплоскостной) и диапазон оборотов, вы должны приобрести правильный коллектор для установки на двигатель вместе с карбюратором. Если карбюратор неисправен или не подходит, то его нужно заменить другим.
Фланцы крепления впускного коллектора для установки карбюраторов отличаются друг от друга, поэтому перед приобретением впускного коллектора определите, какой карбюратор будет использоваться. К примеру, отверстия для самого карбюратора и отверстия для его болтов могут иметь различную форму и расположение.
Некоторые конструкторы "перекармливают" свои двигатели, что ухудшает их реакцию на перемещение дроссельной заслонки, топливную экономичность и состав выхлопных газов. Карбюратор должен быть подобран к впускному коллектору и к двигателю. Дополнительная информация содержится далее в следующем разделе.
Убедитесь, что вы подобрали характеристики коллектора в соответствии с назначением автомобиля. Фирмы-производители впускных коллекторов потратили много времени для испытаний своей продукции на испытательных стендах. Некоторые фирмы продают уже подобранные друг к другу распредвал и впускной коллектор. Перед покупкой коллектора выясните особенности его конструкции, назначение и ожидаемые результаты от его использования на вашем двигателе.
Модели с контролем состава выхлопных газов могут потребовать наличия клапана для регуляции выхлопных газов (EGR). Некоторые специальные коллекторы не имеют возможностей для установки деталей системы EGR. Вместе с тем, многие двигатели детонируют под нагрузкой, когда система EGR отсоединена.
Убедитесь, что коллектор имеет поперечные каналы, чтобы улучшить характеристики двигателя при его прогреве. Без них двигатель будет глохнуть и работать с перебоями, пока полностью не прогреется.
Иногда вновь устанавливаемые коллекторы требуют установки различных тяг для управления дроссельной заслонкой, а также и крепежных устройств. Некоторые двигатели имеют систему подогрева воздушной заслонки и несколько соединений для вакуумных шлангов. Убедитесь, что все детали имеются в наборе или по отдельности перед установкой коллектора на двигатель.

Модели с впрыском топлива
Некоторые специальные впускные коллекторы имеются для двигателей с распределенным впрыском топлива и с корпусом дроссельной заслонки. Большинство из них предназначено для улучшения мощности и экономичности при сохранении низкого уровня токсичных веществ в выхлопных газах.

Что будет правильным для вас
Впускные коллекторы сконструированы так, чтобы работать в конкретном диапазоне оборотов двигателя (верхние и нижние пределы оборотов). Конструкция с двойной плоскостью предпочтительна для работы в области низких и средних оборотов (примерно от 2500 до 4500 об/мин), но из-за того, что каждый цилиндр втягивает топливо только из одной половины карбюратора и из-за того, что потоки сильнее закручены, на высоких оборотах двигателя обычно развивается меньшая мощность. Коллектор с открытой камерой обычно дает меньший крутящий момент на низких оборотах (в основном из-за факторов, связанных с карбюратором, например, плохая подача топлива и распыление топлива при низком воздушном потоке). Но часто он обеспечивает хорошую работу в области средних и высоких оборотов. Коллектор с открытой камерой получает должное при оборотах 4500 до 6500 об/мин для "повседневного" двигателя и с необходимыми модификациями он может хорошо работать вплоть до оборотов 8000 - 8500 об/мин дня гоночных двигателей.

При малом объеме канала и разделении потоков коллектор с двумя плоскостями (внизу на рисунке) жестко передает импульсы к диффузору карбюратора. Это увеличивает скорость воздуха, что улучшает распыление и точность дозировки. В коллекторе с одной плоскостью, большая часть интенсивности импульса уменьшается из-за большого объема камеры и из-за того, что каждый импульс доходит до всего карбюратора. Эти различия влияют на реакцию двигателя, на педаль "газа " на крутящий момент, мощность и на обороты, при которых достигается максимальная мощность.

С немногими исключениями, однако, вы не можете просто установить "гоночный" коллектор и довольствоваться этим. Особенность правильного выбора впускного коллектора состоит в том, чтобы сначала решить, при каком числе оборотов двигатель должен достигать максимальной мощности. Затем подберите впускной коллектор как часть координированного "пакета" (включающего распределительный вал, впускную систему и другие детали), предназначенного для получения максимальной мощности при выбранных оборотах. Однако даже после выбора точки максимальной мощности вы должны подобрать основную конструкцию коллектора перед тем, как вы сможете считать, что нужная деталь определена. Основа для такого решения исходит от понимания различий в мощности, получаемой от одноплоскостных и двухплоскостных впускных коллекторов. Позднее в этой главе мы установим, что карбюратор имеет две основные функции: регулировка количества топлива, поступающего в воздушный поток, проходящий через карбюратор и равномерное распыление этого топлива в проходящем воздушном потоке. Когда вы уясните, что каждое пространство, поворот и контур во впускном коллекторе влияют на работу карбюратора и на характеристики потока топливовоздушной смеси (далее будет обсуждено, как это происходит), то причины, по которым конструкция впускного коллектора влияет на мощность, станут более понятными.

Впускной коллектор последней версии STREET  RAM от фирмы WEIAND для двигателя на основе блока цилиндров CHEVY (Шевроле) рабочим объемом (5735 см3).

Коллектор с двойной плоскостью имеет существенно меньший объем магистрали (канала), чем коллектор с одной плоскостью. Этот объем между карбюратором и впускным клапаном становится важным; когда поток смеси в канале движется в направлении цилиндра. Поток не движется равномерно из-за импульса, который генерируется во впускном тракте, когда впускной клапан открывается и поршень начинает движение вниз в цилиндре. При малом объеме канала этот импульс жестко передается на карбюратор и в некоторый момент поток газов через диффузор ускоряется. Это увеличение скорости воздуха улучшает распыление и помогает точности дозировки в диффузоре. Когда дроссельные заслонки закрыты, импульс во впускном канале приводит к резкому росту давления в каналах системы холостого хода и каналах переходной системы, вызывая тот же самый положительный эффект на поток топлива в режиме холостого хода. В этом случае нет ничего удивительного в том, что эта прямая связь между открыванием впускного клапана и карбюратором увеличивает мощность при низких оборотах и частично открытой дроссельной заслонке.
В однополостном коллекторе ситуация в чем-то другая. Когда импульс во входящем потоке движется по направлению к карбюратору, большинство его интенсивности уменьшается, потому что большой объем камеры является обычным для других семи каналов. Дальнейшее "разбавление" происходит, когда импульс достигает карбюратора, т. к. он передает свою энергию ко всем четырем камерам карбюратора, а не к двум, как при разделенной камере. Это значительно уменьшает интенсивность импульса при низких оборотах двигателя и существенно влияет на поток топлива и его распыление. Эти эффекты уменьшают чувствительность двигателя к перемещению дроссельной заслонки и мощность на низких оборотах.
Когда обороты двигателя возрастают, проблемы, свойственные одно-плоскостному коллектору, уменьшаются. При некотором значении оборотов двигателя скорость газов достигает уровня, когда усиленный сигнал стабилизирует дозировку топлива и его распыление. Когда "низкооборотные" проблемы уменьшаются, то большая камера становится преимуществом, уменьшая сопротивление и позволяя цилиндрам втягивать смесь из всех четырех камер карбюратора. При высоких скоростях потока конструкция коллектора с одной плоскостью и открытой камерой, несомненно, выигрывает соревнование по мощности у конструкции с двумя плоскостями и с раздельной камерой. Легко видеть, почему коллектор с одной плоскостью часто выбирается для чисто гоночных применений, требующих мощности на высоких оборотах. Однако когда речь идет о повседневном использовании, особенно на автомобилях с автоматической коробкой 'передач, лучшим выбором является двухплоскостной коллектор.
Выбор впускного коллектора зависит от важности разных аспектов работы двигателя. Вы должны решить, в каком диапазоне оборотов двигателя его мощность будет использоваться максимально полно. Если вы стремитесь достичь большой мощности, то учтите следующее: автомобиль, оснащенный преобразователем крутящего момента (гидротрансформатором), который останавливается (блокируется) ниже 1800-2000 об/мин, будет разгоняться быстрее при увеличении крутящего момента на 15 н.м. при 2000 об/мин, чем при увеличении мощности на 10 л. с. при 5000 об/мин. Отсюда мораль: усиленно не добивайтесь мощности на высоких оборотах. Подбирайте впускной коллектор, основываясь на том, что обеспечит хорошую работу двигателя, а не на вашем желании выиграть соревнования по мощности. Если ваш автомобиль будет использоваться только в режиме городского движения и будет оснащен автоматической трансмиссией, то разгон с места будет улучшен благодаря увеличению крутящего момента с помощью коллектора с двумя плоскостями. И, как премия, будет усиленный сигнал при "крейсерских" оборотах, что почти всегда увеличивает пробег от заправки до заправки. Если двигатель создается для работы в диапазоне от 2000 до 5500 об/мин, мощность на низких оборотах, реакция на педаль "газа" и даже максимальная мощность могут быть отличными с коллектором двухплоскостной конструкции при условии тщательного подбора распредвала, карбюратора и других деталей.
Однако если у вас автомобиль с механической коробкой передач и особенно если вы собираетесь участвовать в гонках, то стремление, к высокому крутящему моменту на низких оборотах не так важно, так как вы можете увеличивать обороты перед включением сцепления. Если вы выбираете создание двигателя с максимальной мощностью в диапазоне от 5000 до 6500 об/мин или еще выше, то почти всегда лучшим выбором будет коллектор с одной плоскостью! Однако, не все коллекторы с одной плоскостью являются одинаковыми. Размеры каналов и камеры значительно изменяются. Этот и другие факторы определяют то, будет ли конкретный впускной коллектор оптимально работать при оборотах двигателя от 4000 до 7000 об/мин (и выше, если создастся гоночная конструкция).
Даже если ваш автомобиль точно попадет под одну из указанных выше категорий, существуют и другие факторы, которые нужно учитывать. Некоторые последние конструкции коллекторов с одной плоскостью усилен-
но сочетают мощность на низких оборотах, ожидаемой от коллектора с одной плоскостью. Последняя версия впускного коллектора STREET RAM фирмы WEIAND (для двигателей на основе блоков цилиндров "Шевроле" CHEVY 350 и больше) подпадает под эту категорию. Однако существует и карбюратор (карбюраторы будут обсуждены далее в этой главе). Если вы выбираете коллектор, который работает при высоких оборотах двигателя, то ему почти всегда будет подходить большой карбюратор. Это может легко решить проблемы с карбюрацией на низких оборотах. С другой стороны, если вы используете коллектор для высоких оборотов с маленьким карбюратором для улучшения крутящего момента, то причина для использования коллектора с низким сопротивлением устраняется.
Наиболее важным ориентиром, который должен вас удерживать на правильном пути, будет тщательный подбор всех деталей так, чтобы они дополняли друг друга и улучшали мощность без заметных потерь в крутящем моменте на низких оборотах, приемистости и в топливной экономичное! и

"Тюнинг" с дистанционными деталями
Одним из наиболее популярных и недорогих секретов форсировки двигателя состоит в использовании дистанционных деталей (называемых еще проставками или разделителями) между карбюратором и впускным коллектором. Такая модификация используется часто для увеличения мощности на высоких оборотах, но в зависимости от впускного коллектора и типа проставкн, это может улучшить мощность на низких или на высоких оборотах, а иногда улучшений может не быть вообще.
Когда проставка увеличивает мощность, это происходит по двум простым причинам:
• Когда она используется с коллектором с двумя плоскостями, где емкость воздушного потока карбюратора слишком мала, то проставка с одним отверстием будет иметь эффект увеличения емкости карбюратора. В этом случае проставка дает коллектору маленькую дополнительную открытую камеру, и все камеры карбюратора будут работать для всех цилиндров.
• Увеличение объема камеры под карбюратором улучшает воздушный поток внутри впускного коллектора и/или уменьшает проблемы с распределением топлива. Второй вывод базируется на стендовых испытаниях, которые показывают, что проставка (разделитель) может часто усилить воздушный поток, но величина увеличения потока обычно слишком мала для внесения вклада в мощность, измеряемую на испытательном стенде. Увеличение объема камеры должно в таких случаях улучшить качество топливовоздушной смеси (распределение, распыление и т.д.).

Добавление проставки к карбюратору часто улучшает мощность на высоких оборотах, но в зависимости от коллектора и типа использованной проставки могут быть улучшения в мощности на низких или на высоких оборотах, а иногда улучшений может не быть совсем!

Проставка используется совместно с коллектором с двумя плоскостями и емкость (объем) воздушного потока в карбюраторе слишком мала, проставка с одним отверстием увеличит имеющуюся емкость карбюратора.

Увеличение объема камеры под карбюратором улучшает воздушный поток в коллекторе и/или уменьшает неоднородности в распределении топлива. 1 - без проставки; 2-е проставкой.

Фирмы BRASWELL CARBURET1ON (ее продукция показана здесь) и CARBURA TOR SHOP разработали модификации, которые улучшают мощность двигателя, когда мощность на низких оборотах будет понижена в результате действия комбинации проставка/коллектор.

Принципиальным препятствием для использования проставки (разделителя) является то, что примерно в половине случаев она уменьшает крутящий момент на низких оборотах. Эта потеря, вероятно, связанная с увеличением объема камеры, происходит из-за плохой дозировки топлива от уменьшенного входного "сигнала" на карбюраторе. К счастью, этот крутящий момент может быть возвращен путем модификации карбюратора для улучшения реакции на "сигнал".
Проставки, по своей природе, имеют другую очевидную проблему. Они придвигают карбюратор ближе к капоту, что приводит к помехам, ограничивает высоту и потенциал по потоку воздушного фильтра. Подробнее о воздушных фильтрах читайте далее. Проставки, которые имеются во многих мастерских и фирмах, занимающихся форсировкой, имеют высоту от 38 до 50 мм, но вам могут не потребоваться разделители такой толщины (высоты). Проставки толщиной 12,5 - 19,0 мм часто предлагают многие из преимуществ конструкций с толщиной 50 мм, особенно при использовании коллектора с двумя плоскостями, уменьшая потери на низких оборотах и проблемы с зазором под капотом.
Опредедепие оптимальной высоты (толщины) проставки без испытательного стенда является нелегкой работой. Непосредственно связанными с ней параметрами являются основная конструкция головки блока цилиндров и впускного тракта, конфигурация впускного коллектора и профиль распредвала. Предсказание результатов использования проставки на каком-либо коллекторе с одной плоскостью практически невозможно. Некоторые одноплоскостные коллекторы могут дать прирост воздушного потока и мощности вместе с проставкой, тогда как другие хорошо сконструированные коллекторы могут оказывать негативное влияние. В таких случаях проставка, вероятно, оказывает отрицательное влияние на распределение и распыление топлива. К счастью, проставки относительно недорогие и п\ легко устанавливать. Их также легко снять, если они не дают желаемых результатов. Таким образом, выбор проставок по принципу "проб и ошибок" не только практично, но часто и необходимо.

Вообще говоря, проставка толщиной от 16 до 38 мм будет наиболее эффективной совместно с коллектором двухплоскостной конструкции; более толстые проставки будут хорошо работать в сочетании с распредвалами, обеспечивающими большую продолжительность открывании клапанов и большее перекрытие клапанов. Одноплоскостные коллектора однако иногда требуют проставки толщиной от 50 мм и более. Проверки методом "проб и ошибок" являются единственным путем определения, какая проставка лучше работает в конкретных условиях.

Да, проставка, но какая?
Если вы пришли к выводу, что проставка может быть эффективным дополнением к вашему двигателю и имеется необходимое пространство под капотом, позволяющее его установку, то самым важным решением будет по-прежнему следующее: какого типа проставку использовать.
Вдобавок к различным толщинам, проставки выпускаются нескольких различных конфигураций. Наиболее популярным типом, который я уже обсуждал ранее, является проставка с одним большим отверстием между карбюратором и впускным коллектором. Такая проставка обычно наименее чувствительна к типам коллекторов и карбюраторов и для определения ее полезности для увеличения мощности требуется наименьшее время. Однако, конструкция такой проставки в некоторых случаях не может скорректировать проблемы во впускном тракте и может потребоваться проставка более сложной конструкции.
Другая часто используемая конструкция проставки использует четыре отдельных отверстия. Здесь каждое из отверстий увеличивает общую длину камеры карбюратора и преимущества могут быть чувствительными на некоторых комбинациях двигателей и впускных коллекторов. Однако, проставки с несколькими отверстиями, видимо, больше влияют на распределение и распыление топлива, чем проставки с одним отверстием и вновь нет простого пути, чтобы предсказать, что и как будет работать. Эта непредсказуемость в сочетании с несколькими возможностями комбинирования коллекторов и карбюраторов делает очень долгой проверку методом "проб и ошибок", особенно если нет надежных измерительных приборов.
Имеется несколько вариантов проставок с четырьмя отверстиями, которые стали популярными в последнее время. Одна из конструкций с четырьмя отверстиями состоит из отдельных отверстий, которые переходят в одно большое квадратное отверстие для совпадения с отверстием впускного коллектора. Эта конструкция объединяет эффекты увеличения объема камеры и распределением отверстия дроссельной заслонки с увеличением длинны отверстий для дроссельных заслонок. Такая конструкция может часто "помочь" воздушному потоку и мощности, особенно на высоких оборотах. При оборотах, часто используемых на обычных двигателях, эта оригинальная конструкция редко предлагает какие-либо дополнительные преимущества по сравнению с простой конструкцией с одним отверстием. Так как трубы входят в камеру, а не выступают над ней, эта конструкция не увеличивает объем коллектора/камеры (или же уменьшает зазор под капотом). Такая проставка часто используется на высоких коллекторах с одной плоскостью, которые уже имеют большие, не ограничивающие площади камеры. Видимо, проставка предлагает некоторое увеличение мощности в области средних оборотов, когда комбинация карбюратора и коллектора изначально предназначена для очень высоких оборотов двигателя.
Проставка из пластины и труб может быть особенно эффективна при противодействии нейтрализации топлива, которая представляет собой обратный поток распыленного топлива через диффузор, иногда вызывающий видимое облако топлива вокруг воздушной горловины карбюратора. Это явление ограничивает поступление топлива и воздуха и уменьшает мощность. Так как проставка из пластины/ труб ограничивает обратные импульсы, это улучшает мощность двигателя, "страдающего" от этого явления. Замечено, что некоторые проблемы с нейтрализацией потока вызваны не "нормальными" ударными волнами, а, скорее всего, неисправностями механизма привода клапанов. Несоответствующее усилие на седло, дефекты клапанных пружин, утечка в седле выпускного клапана или другие дефекты могут привести к нейтрализации топлива на высоких оборотах. Проставка может уменьшить симптомы этой "болезни", но не излечит их.
Вам потребуется провести несколько экспериментов, чтобы найти ту комбинацию проставки, которая будет хорошо работать на вашем двигателе.
Деньги, которые вы сохранили или потратили при этом, никогда не составят значительную часть общих затрат на двигатель, однако, в сочетании с тщательным подбором и проверками можно добиться заметной разницы в мощности.

Проставки довольно дешевые, но некоторые энтузиасты уменьшают затраты, изготавливая их самостоятельно. Вы должны знать, что без должного терпения вы можете даже свести на нет все преимущества конструкции, которая приводит к улучшению мощности.

Если вы решили, что проставка может быть эффективной добавкой к двигателю, то нужно определиться с тем, какого типа простачку использовать. Конструкции включают одно или два больших отверстия, которые часто менее чувствительны к типам карбюратора и коллектора (проставки с двумя большими отверстиями лучше всего подходят для коллектора с разделенной камерой), а тип с четырьмя отдельными отверстиями может добавить мощность, но такие конструкции могут заметно влиять на распределение и распыление топлива. В заключение, четыре отдельные трубы, которые входят в камеру, могут изолировать карбюратор от завихрений в камере и в некоторых случаях могут воспрепятствовать нейтрализации топлива.

13

Тепловые каналы для выхлопных газов

Многие впускные коллекторы для двигателей V8 имеют встроенный канал для горячих выхлопных газов в нижней части коллектора прямо под карбюратором. Такой канал соединяет маленькое отверстие для выхлопных газов в одной головке блока цилиндров с таким же отверстием в другой головке. Когда горячие выхлопные газы проходят через этот канал (иногда этому содействует специальный клапан во впускном коллекторе), то они нагревают область коллектора, в которой находится камера, улучшающая распыление топлива. Но даже более важным является то, что подогрев коллектора помогает предотвратить конденсацию топлива в нижней части камеры, что является причиной плохой работы и даже остановки двигателя, а также "заливания" свечей зажигания. Такие вспомогательные функции необходимы в основном, когда двигатель холодный и при работе на низких оборотах в холодную погоду.

Многие оригинальные впускные коллекторы для двигателей ГЛ имеют встроенные каналы для горячих выхлопных газов в нижней части коллектора, непосредственно под карбюратором. Это разогревает рабочую смесь и улучшает распыление топлива, предотвращая конденсацию топлива, остановку двигателя и "заливание" свечей зажигания. К сожалению, подача нагретой топливовоздушной смеси также уменьшает мощность.

Хотя подогрев поступающей смеси помогает улучшить запуск холодного двигателя и его работу на холостом ходу, к сожалению, нагретая топливовоздушная смесь уменьшает мощность. Здесь снова налицо компромисс между мощностью и удобствами. Какие преимущества обеспечивает данная система, зависит от того, какого типа коллектор вы имеете, какова ваша манера езды и каковы погодные условия там, где вы живете.

Этот клапан управляется температурно-чувствительной пружиной или вакуумной камерой и направляет горячие выхлопные газы через каналы для подогрева коллектора, когда двигатель холодный. При удержании этого клапана открытым в холодную погоду температура впускного коллектора заметно упадет. Это легкая модификация, которую легко произнести в обратном направлении для зимней эксплуатации.

Вы можете уменьшить потери мощности от подогрева топливовоздушной смеси, сохранив хорошую приемистость двигателя с помощью "подстройки" канала в зависимости от условий. Если автомобиль снабжен чугунным впускным коллектором и используется в холодном климате, то приемистость будет ухудшена, если поток газов через канал будет ограничен зимой. Однако, сняв коллектор в начале лета и закрыв канал, вы можете улучшить мощность в теплую погоду. Более легкая модификация, хотя и не такая эффективная, может быть сделана на двигателях, у которых в выпускной коллектор встроен откидной клапан. Если вы живете в местности, где круглый год тепло, то вы можете постоянно заглушить канал подогрева и немного выиграете в приемистости двигателя. Легче всего сделать это с помощью специальной прокладки, которая включает в себя пластинку для перекрывания канала и устанавливается между впускным коллектором и поверхностью головки блока цилиндров. Для того чтобы какие-либо из этих "хитростей" хорошо работали, вам потребуется также перекалибровать воздушную заслонку карбюратора, чтобы реагировать на изменения температуры коллектора, т.е. отрегулировать пружину воздушной заслонки, чтобы заслонка открывалась быстрее на тех коллекторах, которые прогреваются сильнее, чем стандартные.

Это выпускной коллектор фирмы EDEL BLOCK для блока цилиндров FORD (7538 см3) легче на 11 кг по сравнению со своим стандартным аналогом.

Так как алюминий проводит тепло намного лучше, чем чугун, ему потребуется меньше тепла от каналов для подогрева. Если у вас алюминиевый коллектор, и вы живете в голодном климате, то одна сторона канала может быть разблокирована или вместо, использования пластин, которые разблокируют проход для потока газов полностью, вы можете воспользоваться пластинами, которые имеют малые отверстия, что существенно ограничивает поток газов. Это уменьшает высокие температуры коллектора, но по-прежнему обеспечивает некоторый его прогрев. Но нужно быть осторожным: если эти блокировочные пластины сделаны из некачественной нержавеющей стали, то они могут обгореть в потоке горячих газов в жарком климате. А также с чугунными коллекторами канал для выхлопных газов может быть полностью закрыт, что почти не дает побочных эффектов.
Перед тем как вы перекроете каналы для подогрева, нужно оценить, какую мощность вы можете ожидать от этой модификации. Результаты сильно меняются в зависимости от использованной комбинации.

Следует ли покупать впускной коллектор?
Многие промышленные форсированные двигатели оснащены четырехкамернымп карбюраторами на 180-градусном впускном коллекторе из чугуна, и сразу не возникает вопроса о том, имеются ли существенные потенциальные улучшения характеристик от установки специальных деталей выпускной системы. Есть и ответ. Имеется много весомых причин для замены коллекторов — больше мощности от улучшения конструкции, меньший вес, возможность установки специального карбюратора и т. д. Никогда не покупайте какой-либо специальный коллектор, не представляя себе его преимуществ. Как уже было сказано, всегда учитывайте возможную область применения, вес автомобиля, рабочий объем двигателя, тип трансмиссии и т. д. и принимайте решение о приобретении коллектора на основе указаний данной книги. Более того, если вы стеснены в средствах, ваши деньги можно вложить в гораздо более важные детали: улучшенный распредвал, карбюратор, бронзовые направляющие втулки клапанов и даже в комплект качественных шин. Но если вы можете позволить себе новый высоко технологичный коллектор специальной конструкции, то помните: не покупайте "внешний вид", покупайте "конструкцию".

Варианты установки
При установке всегда используйте новые прокладки и уплотнения. Следуйте инструкциям, прилагаемым к набору прокладок и к впускному коллектору, и используйте качественные детали известных фирм-производителей.
Если головки блока цилиндров перешлифовывались, то обработайте в мастерской и поверхности впускного коллектора, чтобы не было утечек.
Алюминиевые впускные коллекторы немного больше подвержены опасности деформации, чем чугунные коллекторы. Следуйте рекомендованной последовательности затягивания креплений, которая обычно представляет собой попеременное их затягивание от центра к краям и с разных сторон. Для затягивания используйте динамометрический ключ и руководствуйтесь указанным значением момента затяжки.
При замене впускного коллектора используйте новый термостат и прокладку. Используйте для автомобиля правильный термостат. Большинство моделей с контролем выхлопных газов используют термостат с температурой открывания 90-91°С. Ранние модели используют термостат с температурой открывания 83°.
После окончания установки тщательно отрегулируйте тяги управления дроссельной заслонкой, чтобы добиться полного открывания, и проверьте, не заедают ли они перед запуском двигателя.
Проверьте, достаточно ли в двигателе свежего моторного масла и охлаждающей жидкости. Заведите двигатель, установите момент зажигания, отрегулируйте карбюратор (если он есть) и проверьте, нет ли утечки масла, топлива и охлаждающей жидкости.

14

Существует несколько возможных вариантов по увеличению объема двигателя ВАЗ-21083 (и его производных – ВАЗ 2111, 2112, так как все они используют практически одинаковые блоки цилиндров, за исключением применения масляных форсунок в 16-ти клапанных моторах ВАЗ-2112):
Первый (более «народный» – т.к. дешевый) – расточка блока цилиндров под больший диаметр поршня. Затратная часть – работы по расточке блока, стоимость комплекта поршней и колец большего диаметра.
Второй способ (более дорогой) – замена штатного коленчатого вала на другой, имеющий больший радиус кривошипа – больше ход поршня – больше объём . Затратная часть – коленчатый вал (диаметр кривошипа от 74,8 мм до 80 мм), комплект специальных поршней под данный коленчатый вал (т.к. блок цилиндров имеет определенную конечную высоту), поршневые кольца, ну и работы по расточке блока под заданный комплект поршней.

На удивление, рост рабочего объема поршневого двигателя не всегда самый выгодный способ форсировки – иногда, в зависимости от того, что вы хотите получить от мотора, выгоднее доработать головку блока цилиндров с установкой подходящего распределительного вала и после этих операций «снять» большую мощность с вашего силового агрегата.

Естественно, чтобы возможности распределительного вала раскрылись в полную силу, необходима доработка ГБЦ ( головка блока цилиндров) – зачастую довольно серьезная – вплоть до перепрессовки седел и установку клапанов бОльшего диаметра (на 8-ми клапанные моторы хорошо подходят клапаны от BMW , а на 16-ти клапанные – от различных VW и Opel ). Кроме того, нельзя забывать про впускные и выпускные каналы, по которым топливно-воздушная смесь поступает в цилиндры, а отработанные газы «вырываются» с большой скоростью – их необходимо дорабатывать, увеличивая до определенных пределов их сечение, производя внутреннюю полировку и изменяя их профиль.

Кроме ГБЦ, достаточно большое влияние на характер мотора оказывает содержимое и «геометрия» блока цилиндров. Мы не будем обсуждать разные типы поршней и их форму, весовые характеристики коленчатых валов, хотя бесспорно они вносят определенный вклад в характер будущего мотора.

Существует такое понятие, как отношение длины шатуна к ходу поршня, эта характеристика и сам диаметр кривошипа коленчатого вала (ход поршня) существенно влияют на «дыхание» мотора: ведь по своей сути, ДВС – это насос, который прокачивает через себя определенный объем смеси воздуха с топливом за определенный промежуток времени.

В данной статье мы рассмотрим влияние соотношения длинны шатуна и диаметра кривошипа коленчатого вала на «характер» мотора двигателей семейства ВАЗ-2108. В англоязычной литературе это соотношение именуется R / S – rod to stroke ratio , и ему уделяется достаточно серьезное внимание при доработке моторов. Многие источники считают, что «золотой серединой» является величина R / S , равная 1,75.

В Интернете вы сами можете при желании найти достаточно много выкладок и расчетов по геометрии моторов Honda . Отчасти все они будут справедливы и для моторов ВАЗ, так как в обоих случаях речь идет о двигателях относительно небольшого рабочего объема (моторы Honda серий В16А - В20В с объемом соответственно от 1,6 до 2,0 литров, что вполне соотносится с литражом моторов ВАЗ 21083 (2112), получаемым при форсировании путем увеличения рабочего объема). Вот для примера геометрия легендарного мотора В16А (объем 1587 см. куб., мощность 160 л.с.; это первый «гражданский» мотор, имеющий удельную мощность 100 лс/литр):

Длина шатуна: 134 мм
Ход поршня: 77 мм

Соотношение R / S : 1,74:1 (что как видим практически близко к «золотой середине»)
Посмотрим какая обстановка с отечественными двигателями (берем только ВАЗ 8-го семейства, т.к. другие не столь актуальны)

21081 – объём 1099 куб. см
- ход 60,6 мм
- диаметр поршня 76 мм
- длина шатуна 121 мм
- R/S = 1,996

2108 - объём 1288 куб. см
- ход 71 мм
- диаметр поршня 76 мм
- длина шатуна 121 мм
- R/S = 1,7

21083 - объём 1499 куб. см.
- ход 71 мм
- диаметр поршня 82 мм
- длина шатуна 121 мм
- R/S = 1,7

21084 - объём 1580 куб см.
- ход 74,8 мм
- диаметр поршня 82 мм
- длина шатуна 121 мм
- R/S = 1,61

Шатун 132 мм могут устанавливаться в стандартный блок цилиндров ВАЗ 21083 только при использовании 2-х колечных поршней.

Эффект большого R/S:

ЗА: Позволяет поршню дольше находиться в ВМТ (верхняя мёртвая точка), что обеспечивает лучшее горение топливной смеси, т.е. более полное сгорание топливной смеси, более высокое давление на поршень после прохождения ВМТ, более высокая температура в камере сгорания. В результате хороший момент на средних и высоких оборотах. Длинный шатун уменьшает трение пары «поршень-цилиндр», а это особенно важно при рабочем ходе поршня.

ПРОТИВ: Мотор, собранный с достаточно большим значением R / S не обеспечивает хорошее наполнение цилиндров на низких и средних частотах вращения КВ, из-за снижения скорости воздушного потока (из-за уменьшения скорости движения поршня после ВМТ, в момент открытия впускного клапана). Большая вероятность появления детонации из-за высокой температуры в камере сгорания и длительного времени нахождения поршня в ВМТ.

Эффект малого R / S :

ЗА: Обеспечивает очень хорошую скорость наполнения цилиндров на низких и средних частотах вращения КВ, так как скорость движения поршня от ВМТ больше, разряжение нарастает быстрее, что улучшает наполнение цилиндров, более высокая скорость движения топливовоздушной смеси делает смесь более гомогенной (однородной) что способствует лучшему сгоранию. Преимущества: более низкие требования к доработке и диаметрам каналов ГБЦ, чем на моторе с высоким соотношением R / S.

ПРОТИВ: Малая величина RS означает, больший угол наклона шатуна. Это значит, что большая сила будет толкать поршень в горизонтальной плоскости. Для мотора это означает следующее:

Большая нагрузка на шатун (особенно на центр шатуна), что делает разрушение шатуна более вероятным. Разрушение шатуна само по себе мало вероятно, кроме случаев обрыва, при заклинивании и гидроударе, как правило, шатун рвется у верхней или
нижней головки под углом приблизительно 45 градусов к оси шатуна.
Увеличение нагрузки на стенки блока цилиндров, большая нагрузка на поршни и кольца, увеличение рабочей температуры вследствие повышенного трения, как результат, более быстрый износ стенок цилиндра, колец, и ухудшении условий смазки. Износ этого участка зависит от величины смещения оси пальца отн. оси поршня и от значения максимального угла наклона шатуна, т.е. при применении "кованных" поршней со смещенным пальцем, износ будет меньше чем при применении стандартных поршей.
Более короткий шатун также увеличивает скорость движения поршня, что влияет на износ и увеличение трения. Максимальная скорость поршня приходится на угол около 80 градусов поворота коленчатого вала от ВМТ, для мотора с коленвалом 74,8 мм при 5600 оборотов в минуту она равна 22,92 м/с при шатуне 121 мм., и 22,80м/с., при шатуне 129 мм.
Наиболее весомым является зависимость ускорения поршня от длины шатуна. Большие значения ускорения положительно влияют на наполнение цилиндров на малых оборотах, что ведет к «тяговитости» двигателя в следствии лучшего наполнения. Но на высоких оборотах из-за инерционности потока во впускной трубе происходит эффект запирания на впускном клапане (т.е объем цилиндра над поршнем растет быстрее, чем может заполняться через клапанную щель, что ведет к ухудшению наполнения и мощностных характеристик на высоких оборотах). В случае длинного шатуна на малых оборотах происходит обратный выброс смеси, но на высоких нет явления запирания.

По вполне понятным причинам, АВТОВАЗ комплектует свои моторы шатуном 121мм (он обеспечивает 83-му мотору R/S = 1,7, что вполне удовлетворительно). Но для «тюнингаторов», использующих КВ с большим радиусом кривошипа, шатун 121 мм обеспечивает не очень хорошее отношение R/S (см. табл. 1), поэтому на рынке «нестандартных», а-ля «спортивных» запчастей существуют и продаются шатуны с большей длинной – 129, 132 мм, цена их правда не столь привлекательна, она колеблется от 70 до 200 долларов за комплект. Еще не стоит забывать, что «экстра ходы» поршня компенсируются уменьшением компрессионной высоты поршня (смещением поршневого пальца вверх) или увеличением высоты блока цилиндров. Т.к. компрессионную высоту можно уменьшать до определенного предела, то следующим шагом будет замена блока цилиндров на более высокий, что повлечет за собой немалые расходы финансовых средств. Все эти действия направлены для того, чтобы увеличить значение R/S.

15

спс за информацию


Вы здесь » PITstop - Тюнинг Своими Руками » Чип тюнинг » Форсировка двигателя